Biological & Chemical Oceanography Data Management Office

Southern Ocean 2001 moorings: current data from ARSV Laurence M. Gould LMG0103, LMG0201A in the Southern Ocean from 2001-2002 (SOGLOBEC project)

Project: U.S. GLOBEC Southern Ocean (SOGLOBEC)

Award # OCE-1851012, Funding by NSF Division of Ocean Sciences

DOI:10.1575/1912/bco-dmo.779540.1 Version Date: Oct. 27 2009 V 1.0 Data type: experimental VALIDATED

Dataset Files 3 data-filename.CSV (18KB), ISO19115-2.xml (110kb), datapackage.json (5kb)

People

Principal Investigator: Robert C Beardsley

Co-Principal Investigator: Dr Richard Limeburner

Student: Dr Carlos Moffat

BCO-DMO Data Manager: Nancy Copley


Abstract

As part of the SO GLOBEC field program, the Woods Hole Oceanographic Institution (WHOI) deployed an array of instrumented subsurface moorings near Marguerite Bay during March 2001- March 2002 and a second array during March 2002-March 2003 (Figure 1). The moored measurements included pressure, temperature, conductivity, velocity, acoustic backscatter, and ice thickness. To monitor surface forcing during the moored array observations, two automatic weather stations (AWSs) were deployed on islands in Marguerite Bay and time series of wind, air temperature, pressure, and relative humidity were collected from May 2001 through March 2003.

The primary goals of this effort were to measure the temporal and spatial variability of currents and physical and biological water properties in the study area on time scales from hours to seasonal, improve our description and understanding of the regional general circulation, and identify and describe those physical processes that make this region well suited for krill production and survival. [from technical report WHOI-2005-07.pdf (10.2 MB)]

Rotation angle (rotangle): The basic coordinate system is x(east) and y (north); the x and y velocity components are u and v. for some analysis, the coordinate and velocity are rotated into a local isobath coordinate system, where xr and yr are the rotated coordinates and ur and vr are the rotated velocity components. rotangle is the angle that the rotated xr and ur point in, measured in degrees counterclockwise from east. In the A1 case, rotangle = -152 degrees. Thus, the xr axis has been rotated 152 degrees clockwise (due to the negative sign on rotangle) from x (east). The governing complex equation (as it is written in matlab) is:

ur + i*vr = exp(i*pi*rotangle/180)*(u + i*v) where i = sqrt(-1).

Description

As part of the SO GLOBEC field program, the Woods Hole Oceanographic Institution (WHOI) deployed an array of instrumented subsurface moorings near Marguerite Bay during March 2001- March 2002 and a second array during March 2002-March 2003 (Figure 1). The moored measurements included pressure, temperature, conductivity, velocity, acoustic backscatter, and ice thickness. To monitor surface forcing during the moored array observations, two automatic weather stations (AWSs) were deployed on islands in Marguerite Bay and time series of wind, air temperature, pressure, and relative humidity were collected from May 2001 through March 2003.

The primary goals of this effort were to measure the temporal and spatial variability of currents and physical and biological water properties in the study area on time scales from hours to seasonal, improve our description and understanding of the regional general circulation, and identify and describe those physical processes that make this region well suited for krill production and survival." [from technical report WHOI-2005-07.pdf (10.2 MB)]

Still have questions?

CONTACT US Read FAQ's
TOP